

AVR1310: Using the XMEGA Watchdog Timer

Features
• Watchdog timeout programmable through fuses
• Watchdog settings lockable through fuses
• Watchdog with normal and window mode

 Normal mode:
 Programmable timeout period between 8 ms and 8 seconds

 Window mode:
 Programmable “closed window” period between 8 ms and 8 seconds

 Total timeout period between 16 ms and 16 seconds, using window mode
• Example source code

 Initialization of normal and window mode operation
 Disabling and reconfiguration of Watchdog

1 Introduction
Watchdog Timers are used to ensure that a system can recover from unforeseen
failures in firmware or hardware. The Watchdog Timer will, if used correctly, be
able to detect abnormalities in the program execution and respond by resetting the
MCU. This brings the MCU to a well-defined and known state from where normal
operation can be resumed.

The XMEGA™ AVR® family offers a very robust internal watchdog: Ordinary
integrated Watchdog Timers often use the CPU clock as clock source, while the
XMEGA Watchdog Timer’s clock source is independent from the CPU clock. This
means that failure of the main clock would not affect the Watchdog Timer
operation.

Further, the XMEGA Watchdog Timer does not only offer the “normal mode”,
where the Watchdog Timer must be reset before a given timeout period. It also
offers a “window mode” where the Watchdog Timer only can be reset within a
limited period. In window mode, if the Watchdog Timer is reset too early (or too
late), a system reset is triggered.

More information about using watchdog timers can be found in application note
AVR132.

8-bit
XMEGA
Microcontrollers

Application Note

Rev. 8034B-AVR-04/09

2 AVR1310
8034B-AVR-04/09

2 Theory of operation
Before the XMEGA Watchdog Timer can be discussed it is important to get a few
terms clear:

• The Watchdog Timer (WDT) is the peripheral module that can be configured to
generate a system reset if the timer is reset too early or too late according to
specified timeout periods. The timer value itself cannot be read or written, only
reset.

• A Watchdog Timer Reset (WDT reset) is when the timer in the WDT is cleared
(aka reset). This will make the timer start counting from zero again, and thus
restart the timeout period.

• A “system reset” is when the AVR microcontroller is reset, resetting the CPU and
I/O register to default values, and restart program execution from address 0x0000
(or boot section). The WDT can cause a system reset if it times out or, in window
mode, if the WDT is reset too early.

2.1 Normal Mode
The WDT can be used in normal mode, which is when a single timeout period is set
for the WDT; if the WDT is not reset before the timeout occurs the WDT will cause a
system reset. Figure 2-1 illustrates this. The “Open” range along the “WDT Count”
axis indicates that the WDT can be reset at any time before the WDT timeout (TOWDT)
expires (please refer to section 2.5 for exact timing details), as opposed to when
using the window mode where the WDT cannot be reset until after the Watchdog
Window timeout (TOWDTW) expires.

Figure 2-1. Timely and late (missing) Watchdog Timer reset in normal mode.

t [ms]

WDT Count

5 10 15 20 25 30 35

TOWDT = 16

Timely WDT
Reset

O
pe

n

TOWDT

WDT Timeout

System Reset

 AVR1310

 3

8034B-AVR-04/09

2.2 Window Mode
When the WDT is used in window mode, it uses two different timeout periods, a
“closed” window timeout period (TOWDTW) and the normal WDT timeout period
(TOWDT). The first defines a period from 8 ms to 8s where the WDT cannot be reset: if
the WDT is reset in this period the WDT will cause a system reset. The normal WDT
timeout period, which is also 8 ms to 8s, defines the duration of the “open” period, in
which the WDT can (and should) be reset. The open period will always follow the
closed period, and thus the total duration of the WDT timeout is the sum of the
windowed and the normal timeouts. The closed and open periods used in window
mode are illustrated in Figure 2-2.

Figure 2-2. Timely and early Watchdog Timer reset in Window mode.

t [ms]

WDT Count

5 10 15 20 25 30 35

TOWDTW = 8

TOWDT = 8

Timely WDT
Reset

C
lo

se
d

TOWDTW

O
pe

n

TOWDT

Early WDT Reset

System Reset

2.3 Timer Clock
The WDT is clocked from an internal 1kHz ultra low power (ULP) RC oscillator. This
oscillator can also be used by the RTC timer and is used by the Brown Out Detection
circuit - if used in sampled mode. If any of these modules are configured to used the
ULP oscillator the oscillator is running. The additional current consumption by
enabling additional modules using the ULP RC oscillator is very low. Please refer to
the datasheet for more information about power consumption.

It is important to be aware that the clock for the WDT is not very accurate. This is due
to the fact that the oscillator is designed to draw very little power to be able to use the
WDT even in long-life battery powered applications. The downside of low power
oscillators is low accuracy. The typical accuracy of the clock for the WDT is +/-30%
(please refer to datasheet for exact information on accuracy of the clock). This means
that one have to be aware that the clock frequency can vary from one device to
another. When designing software which uses the WDT the device-to-device variation
must be kept in mind to ensure that the timeout periods used are valid for all devices,
and not only the ones used in the lab during development.

Further, one has to consider that the clock source may vary over temperature and
supply voltage – though this variation is significantly less than the +/-30% device-to-
device variations. Please refer to the datasheet for more information on this topic.

4 AVR1310
8034B-AVR-04/09

2.4 Timeout Periods
The WDT offers a wide range of timeout periods, from 8 ms to 8 seconds (please
refer to datasheet for details). The timeout period for the WDT period and the WDT
window period is controlled by respectively the WDT Period (PER) bits and the WDT
Window Period (WPER) bits located in the WDT Control Register (CTRL) and WDT
Window Control Register (WINCTRL).

The WDT is reset when a valid write access to CTRL or WINCTRL register is
performed (refer the description of the timed sequence required to write the control
registers found in section 2.6.2).

2.5 Digital timing of the Watchdog Timer
The WDT is operating in a different clock domain than the CPU and synchronization
between the two domains should be considered when using the WDT.

It takes up to 2-3 WDT clock cycles to configure the WDT: when configuration
settings are written to the WDT control registers (CTRL and WINCTRL), the new
configuration becomes effective from the next WDT clock edge (rising edge of WDT
clock in Figure 2-3), i.e. between 2 and 3 ms after the configuration is written. This
means that the initial timeout period is up to 3 ms longer than the specified timeout. If
the specified timeout is 8 ms, the actual timeout will be between 10 and 11 ms. This
will mainly be relevant when using window mode and short timeout periods. This
characteristic is not unique to the WDT; all asynchronous timers operate in this way
due to synchronization between clock domains.

Again, the WDT is reset when a valid write access to the control registers is
performed (please refer to section 2.6.2 for further details).

Figure 2-3. Digital timing of the XMEGA Watchdog Timer.

t [ms]

WDT count

5 10 15

TOWD = 8

Execution of WDR instruction

TWDT_Reset

System Reset

WDT clock

WDT timeout

WD timer reset

T0

0
1

2
3

4
5

6

0
1

2
3

4
5

6
7

8

 AVR1310

 5

8034B-AVR-04/09

Another timing characteristic that one has to be aware of is that the duration between
the execution of the Watchdog Timer Reset instruction (WDR) and the actual
resetting of the WDT, is also subject to synchronization between clock domains: the
WDT is reset on the third WDT clock edge after the WDR is executed (see TWDT_Reset
in Figure 2-3), which means that the WDT is reset between 2 ms and 3 ms after the
WDR instruction is executed. Considering the use of a 8 ms timeout period, one
therefore have to realize that the first WDR instruction should be executed within 5
ms after enabling the WD. Taking the +/-30% accuracy of the ULP oscillator into
account as well, the WDR instruction must be executed within 3.5 ms or less. The
interval between subsequent WDR instructions should be 4.9 ms or less (8 ms – 1 ms
uncertainty – 30% oscillator uncertainty). The effect of this synchronization is
minimized when the timeout period increases. This should however provide a strong
hint that use of window mode in combination with short timeout periods requires very
strict timing.

If the WDT causes a system reset, e.g. by timing out, the system reset occurs on the
first following WDT clock edge (see Figure 2-3). This means that the system reset
occurs 1 ms after the WDT timeout period has expired. This should normally not
cause any problem, but it is useful to know if trying to measure the WD timeout period
by monitoring the logic level of a pin. A better way to determine the actual frequency
of the WDT clock is to use the XMEGA Real Time Clock timer, which can also be
clocked by the ULP oscillator.

All of the above-mentioned conditions apply to both the WDT normal mode timeout
and the WDT window mode timeouts.

2.6 Watchdog enabling and timing configuration
The WDT can be enabled and configured in two ways, either through fuses, which
makes the AVR load the specified settings before leaving system reset. Alternatively,
the WDT can be enabled at run-time, which means that the firmware writes the
desired settings to the WDT control registers at run-time.

2.6.1 Fused enabling of the Watchdog

The WDT can be initialized automatically during system reset by writing the fuses
corresponding to the normal mode and to window mode. These fuses will determine
both the Watchdog Timer timeout period and the duration of the WDT closed window,
and can also be used to enable the WDT at start-up. Please refer to the datasheet for
more information about the fuses controlling the WDT.

Note that the window mode cannot be enabled through fuses, as it is an advantage to
be able to enable it run-time to ensure proper timing when using window mode.

To provide maximum protection, it is possible to program the Watchdog Lock
(WDLOCK) fuse, which ensures that the WDT cannot be disabled run-time - neither
accidentally, nor on purpose. This can be desirable if considering that a system failure
may have a duration in time that for some reason impairs the enabling of the
Watchdog at run-time (in the firmware).

6 AVR1310
8034B-AVR-04/09

Figure 2-4. State chart for enabling WD through fuses.

Timely execution of
WDR instruction

WDT Active
(WDT

counting)

System
Reset

WDT timeout or
Early execution of WDR

System initialization,
WDT config and enabling

(hence CPU is active)

WDT Reset

Resume counting

2.6.2 Run-time enabling of the Watchdog Timer

In some applications it can be required to be able to disable the WDT to reduce the
power consumption in sleep mode to an absolute minimum. This can be the case in
long life battery powered applications. If it is desirable to use the WDT in periods
where the CPU is active, but not in sleep modes, it is convenient to be able to enable
and disable the WDT, though this may reduce the protection offered by the WD. Note
however that if other modules are using the ULP oscillator in sleep mode (BOD and
RTC) the additional current consumption spend by leaving the WDT on is very low.

To enable the WDT in run-mode or to change the timeout period a timed sequence
must be used: The timed sequence involved the Configuration Change Protection
register (CCP), which controls access to certain registers. After writing the signature
0xD8 to the CCP, the WDT can be reconfigured within the next four instruction
cycles. During these four instruction cycles the global interrupts are automatically
disabled to ensure that the timed sequence is not invalidated by an interrupt. Note
that the timeout is given in instruction cycles, and not clock cycles, a DMA transfers
will therefore not affect the timing: DMA transfers are not counted as instruction
cycles – only instructions executed by the CPU are counted.

Within four instruction cycles after writing the 0xD8 signature to the CCP, the WDT
control registers (CTRL and WINCTRL) can be modified. The procedure for doing so is
specified in the datasheet, and examples how to do it can be found in the code
example for this application note.

Note that it is not possible to change the WDT or the WDT window mode
configuration while the WDLOCK fuse is set, but it is possible to enable/disable the
WDT window mode.

 AVR1310

 7

8034B-AVR-04/09

Figure 2-5. State chart for enabling WDT run-time.

Timely execution of
WDR instruction

WDT Active
(WDT

counting)

System
Reset

WDT timeout or
Early execution of WDR

System initialization
(CPU in Reset)

CPU Active
(WDT

Disabled)

WDT configuration and
enabling

WDT Reset

Resume counting

2.7 Intended use of the Watchdog
A WDT is meant to save the day if the system has an unforeseen failure that is not
handled in firmware or hardware, or if an external disturbance causes the system to
fail. A well-used WDT would be able to generate a system reset, which the end-user
will not or will barely notice. Seeing this in contrast to a product that needs power
cycling every now and then to return to an operational state, the difference should be
apparent: Whether the end-user is satisfied with the product or not.

In general it is recommended to issue a WDT reset from somewhere in the main loop
of the firmware. Do not reset the WDT in interrupt service routines - unless the
interrupt routine checks a series of flags that confirms correct execution of various
parts of the firmware. If these simple rules are followed, the WDT is hard to misuse.

The WDT window mode is a bit more challenging to use than the normal mode, as it
involves more strict control of the WDT reset timing. In window mode the WDT should
be reset from somewhere within the main loop, never in interrupt service routines, as
this would impair the closed window protection: Because the closed window defines
the minimum expected duration of the main loop (or subsections of the main loop), it
can be used to catch cases where parts of the main loop code is not executed, or
cases where early exit from function calls happens. An example could be that some
algorithm or other software failure causes an operation to finish too quickly. For
instance, the expected duration of writing a value to the EEPROM is 4 ms, but if it
completes in a few microseconds (inspection of a flag failed?), a subsequent WDT
Reset would arrive too early. Another example could be corruption of the return stack
or stack pointer itself, causing abnormal program execution.

Another case where the window mode offers good protection is if the code execution
is stuck in a loop where the WDR instruction is executed repeatedly: if the WDT reset
occurs more frequently than anticipated the WDT will “assume” that a failure has
occurred and reset the system to bring it back to an operational state.

8 AVR1310
8034B-AVR-04/09

3 Examples
This application note includes a source code package with a basic Watchdog Timer
driver implemented in C.

Note that this Watchdog Timer driver is not intended for use with high-performance
code. It is designed as a library to get started with the XMEGA Watchdog Timer. For
timing and code space critical application development, you should access the
Watchdog Timer registers directly. Please refer to the driver source code and device
datasheet for more details.

3.1 Files
The source code package consists of three files:

• wdt_driver.c – Watchdog Timer driver source file
• wdt_driver.h – Watchdog Timer driver header file
• wdt_example.c – Example code using the driver

For a complete overview of the available driver interface functions and their use,
please refer to the source code documentation.

3.2 Doxygen Documentation
All source code is prepared for automatic documentation generation using Doxygen.
Doxygen is a tool for generating documentation from source code by analyzing the
source code and using special keywords. For more details about Doxygen please visit
http://www.doxygen.org. Precompiled Doxygen documentation is also supplied with
the source code accompanying this application note, available from the readme.html
file in the source code folder.

8034B-AVR-04/09

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
Avr32@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR® and others, are the registered
trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	1 Introduction
	2 Theory of operation
	2.1 Normal Mode
	2.2 Window Mode
	2.3 Timer Clock
	2.4 Timeout Periods
	2.5 Digital timing of the Watchdog Timer
	2.6 Watchdog enabling and timing configuration
	2.7 Intended use of the Watchdog

	3 Examples
	3.1 Files
	3.2 Doxygen Documentation

